坦克的基本性能
《世界科技全景百卷书》章节:坦克的基本性能,去读读网友提供全文无弹窗免费在线阅读。!
坦克具有火力、机动性和防护三大基本性能。这三大性能是评价坦克战斗性能好坏的主要依据。
1.火力
坦克的火力是指坦克全部武器的威力。这种威力表现为摧毁战场上各种硬目标特别是装甲目标和杀伤软目标――敌兵的能力。坦克的火力是用在最短的时间内,以最少的弹药消耗,摧毁或压制各种目标的可能性来衡量的。坦克的火力不但取决于坦克装配武器,弹药的种类、数量和质量,而且取决于火控装置的效能。现代主战坦克的主要武器一般是105~125毫米口径的线膛炮或滑膛炮,配用空甲弹、破甲弹、榴弹和碎甲弹等弹种,弹药基数为40~60发。现代主战坦克一般都可行进间射击,从发现目标到射击的反应时间大约为3~4秒。
2.机动性
坦克的机动性是指坦克在各种条件下行驶的可能性和难易程度。坦克的机动性主要取决于自身的战斗全重、发动机功率以及传动、行动、操纵等装置的性能。机动性的性能指标主要有吨功率、最大速度、越野速度、最大行程、加速性、平均单位压力、转向性、超越各种障碍的能力等吨功率等于发动机额定功率与战斗全重之比。现代坦克的吨功率15~29.3马力/吨,最大速度已达60~70公里/小时,越野速度可达55公里/小时,最大行程一般为300~600公里。坦克的加速性是指坦克由静止状态达到最大速度的能力,以坦克由静止状态加速到32公里/小时所需时间来表述,现在,一般为6~7秒钟,所用时间越短,加速性越好。坦克的平均单位压力等于坦克战斗全重与两条履带着地面积之和的比。现代主战坦克的平均单位压力已达0.80~
20.95公斤/厘米 。
3.防护
坦克的防护性能是指保护坦克车内人员、武器弹药、机件、设备、器材等免受杀伤破坏的能力。坦克的防护包括直接防护和间接防护。直接防护是靠坦克的装甲壳体等进行防护,旨在使坦克被击中后不致被击毁,尽可能减小损害或不丧失战斗力。采用良好的装甲材料或复合装甲以及隔仓结构等都属于直接防护。间接防护首先在于使坦克不被敌人发现;一旦被发现,尽可能不被击中;万一被击中,尽可能减小破坏。减小坦克外形尺寸,实行伪装、隐蔽、规避,采用对抗装置等都属于间接防护。此外,现代主战坦克一般还配有三防设备。
火力、机动和防护是相互关联、相互制约的。例如,要加强火力,或是加大火炮的口径或是增加弹药基数,这势必增加坦克重量,从而降低坦克的机动性;为增强防护,可采用厚装甲,但这会使坦克增重从而降低坦克的机动性;要提高机动性,或是采用大功率发动机或是坦克小而轻,但这就要严格限制坦克的重量,从而限制了火炮口径和装甲的厚度。因此,在设计和评定坦克时,要对火力、机动性和防护的各种指标进行综合分析。上述三大性能都是坦克的主要性能,究竟哪个重要,不同的国家有不同的见解,侧重不同,排列顺序也不同。绝大多数国家把火力放在第一位,其次是机动性或是防护,或者机动性和防护并列。只有少数国家的个别坦克将防护放在第一位,如以色列的“梅卡瓦”主战坦克。
现代坦克炮
坦克炮是现代坦克的主要武器。坦克主要在近距离作战,坦克炮在1500~2500米距离上的射效高,使用可靠,用来歼灭和压制敌人的坦克装甲车,消灭敌人的有生力量和摧毁敌人的火器与防御工事。
坦克炮是由小口径地面炮演变而来的。现代坦克炮是一种高初速长身管的加农炮。它的主要诸元有口径、穿甲弹的初速、全装药杀伤爆破榴弹和减装药杀伤爆破榴弹的初速、破甲弹的初速、发射速度、高低射界、方向射界、炮弹重量和弹药基数等。
坦克炮一般是由炮身、炮闩、摇架、反后坐装置、高低机、方向机、发射装置、防危板和平衡机组成的。炮身在火药气体的作用下,赋予弹丸初速和方向。炮口或靠近炮口部位 (加粗部分)的抽气装置是坦克炮所特有的。当弹丸飞离炮口时,膛内压力迅速下降,抽气装置利用火药气体本身的引射作用把自身原有的火药气体从喷嘴排出,使喷嘴后的膛内形成低压区,从而可将炮膛内残存的火药气体排到膛外,以免废气进入战斗室,影响乘员战斗力。
坦克炮的身管管壁受太阳辐射、雨淋、风吹会产生温度梯度,致使身管弯曲,弹着点偏移。根据试验,某坦克105毫米火炮受阳光暴晒、身管的上下温度差达3.6℃时,炮口偏移2密位。为此,现代主战坦克炮一般都装有隔热套。有的隔热套是用两层玻璃纤维增强塑料,中间填以泡沫塑料制成的。有的隔热套是用绝缘材料或导热金属铝制成的单层同心套,以身管和同心套间的空气作为隔热层。也有的用金属与绝缘材料相间排列套在身管外面。其中,以后者为好。隔热套能使火炮发射时产生的热量在身管四周均匀分布,减少身管变形,从而提高火炮的命中率。
火炮身管借助螺纹联结器与炮尾相连,以便于拆卸。炮闩用来闭锁炮膛、击发炮弹、抽出药筒,开闩和关闩可自动进行。摇架用其两个耳轴把火炮装在火炮支架上。炮尾上装有由驻退机和复进机组成的反后坐装置,用以消耗火炮后坐动能,使后坐部分回到原位,并在任何仰角上都能使火炮处于最前方位置,保证火炮正常工作。发射装置用来使击发装置击发。防危板用于击发时保护乘员安全。位于火炮右侧的平衡机用来平衡火炮摇动部份的重量,使火炮操纵轻便,仰俯平衡。
现代坦克炮的威力是很大的,它能远距离穿甲。前苏联T-72坦克125毫米火炮发射初速1650米/秒的长式动能弹时,在2000米距离上可击穿140毫米/60°的靶板,也就是穿透将近一尺厚的钢板。前西德豹Ⅱ坦克120毫米火炮发射初速度为1650米/秒的长杆式动能弹时,在2200米距离上可击穿厚度为350毫米的垂直装甲,即可击穿现今各种坦克。为什么坦克炮会有如此强大的威力呢?
坦克炮的口径大。由于坦克的装甲车体坚固,稳定性好,所以可装载大口径的火炮。在相同条件下,火炮的口径大,炮弹粗,药筒装的发射药多,初速大,因而威力就大,也就是说火力强。那么,是不是口径越大越好呢?不是的。因为火炮口径太大,则在其他条件相同情况下,整个火炮、炮塔座圈、炮塔都要加大,因而会使坦克加宽加重,不便于机动和铁路运输。并且,大口径的炮弹很重很长,不容易实现自动装填,人工装弹又特别费劲,坦克运动中装弹几乎成为不可能,炮弹发射后空金属药筒不易处理,因而直接影响发射速度。此外,口径大往往会导致弹药基数的减少。所以,现代坦克炮的口径一般为85~125毫米。主战坦克的火炮口径为120~125毫米,已被认为达到了极限。美国高机动、灵活性试验车上采用了75毫米的自动机关炮,这是减小口径的趋向。采用电渣精练钢、利用自紧工艺提高身管强度,以加大膛压。初速可达2000米/秒以上,口径可能减小,但穿甲效能不降低,射速可通过装填自动化提高。另外,电磁炮在美国正处于实验室阶段,一旦可行,初速可提高到6000米/秒。
坦克炮的身管长。现代坦克炮的炮身长为一般口径的50倍以上。大于40倍口径的长身管火炮,叫加农炮。长身管炮与短身管炮相比,射出的弹丸初速大,动能大,射角小,不超过45°,弹道低伸,即弹丸在空中飞行时的轨迹比较平直,便于直接瞄准,射击精度高,能远距离穿甲,适于平射打坦克装甲车等活动目标和突出地面的单个垂直目标。
火炮身管的内腔一般叫炮膛。身管内壁有膛线 (或称来复线)的火炮叫线膛炮;身管内壁没有膛线的火炮叫滑膛炮。现代主战坦克大多采用滑膛炮。如前苏联T-72坦克、前西德豹Ⅱ坦克和美国后期的M-1坦克等。大多采用滑膛炮的主要原因有四点:一是滑膛炮采用长径比较大的动能弹,因而穿甲能力强。二是管壁较厚,且无膛线,不存在膛线烧蚀问题,膛内阻力小,使用寿命较长。特别是它的发射药装得多,膛内压力大,因而发射初速能大大超过1800米/秒,可以提高尾翼稳定脱壳穿甲弹的穿甲能力。滑膛炮发射破甲弹时,由于弹丸不靠膛线稳定,因而无离心力对聚能射流的有害影响,破甲能力可以提高。三是炮弹无滑动弹带,减轻了弹重。四是适于发射多种弹,如小型导弹、火箭增程弹等。但是滑膛炮只能发射尾翼稳定弹,而且射击距离远时,由于弹丸尾翼受外界因素的影响,射击精度较低。
坦克炮一般安装在可以旋转的炮塔内。炮塔的旋转是通过操纵台或人手借助动力传动装置或电动液压传动装置来实现的,可使坦克炮有 360°的方向射界,即可进行圆周射击和迅速射击,因而火力机动性好。坦克在原地、短时间和行进间,坦克炮都可以射击。坦克炮的威力与坦克的快速运动相结合,可使坦克具有“铁甲骑兵”之称。
现代坦克配备的弹种
现代主战坦克一般配备有尾翼稳定脱壳穿甲弹、破甲弹和碎甲弹;对付野战工事,杀伤有生力量,通常配备有榴弹;为对付接近坦克的敌人兵员,有的坦克还配备了榴霰弹或群子弹;有的坦克还配备照明弹、烟幕弹和燃烧弹等。弹药基数为34~63发。所谓弹药基数就是每辆坦克按规定标准一次所携带的各种弹药的总数。
坦克炮弹可以按装填方式分为定装式和分装式炮弹。弹丸和药筒结合成一整体的定装式炮弹一次装填入膛,中、小口径火炮采用这种弹可以提高发射速度。前苏联T-54A中型坦克就是用这种定装式炮弹。
大口径炮的弹较重,为了便于装填手向炮膛内装填,采用弹丸和药筒分开装填。这种分装式炮弹可以减轻装填手的劳动强度,在一定坦克的空间内可容纳较多的炮弹。
炮弹是由弹丸 (包括弹体、弹带、引信、炸药)和药筒 (包括药筒、底火、发射药、辅助品)两部分组成的。装在弹丸上的引信用来控制弹丸在弹道某一点上适时地起爆。破甲弹要求引信瞬发度高,大着角发火性能好,因而用压电引信。杀伤爆破榴弹配用非触发引信,以增大杀伤效果。药筒用来容纳装药、旋结底火和连接弹丸,防止装药受潮或损伤,在发射时则用以密封火药气体。药局有金属的,如铜或钢外面涂铜的;有半可燃药筒,如用优质硝化棉、惰性纤维和粘合剂压制而成的半可燃药筒。半可燃药筒可作为部分发射药燃烧掉。这种药筒较轻,便于装填,发射后的残余一氧化碳少,可减轻对乘员的伤害,而且不存在药筒的处理问题。但是,由于轻,惯性小,表面光洁度差,因而在药室内摩擦阻力大,容易发生装填不到位的现象,防明火的性能差。尽管如此,由于半可燃药筒有明显优点,所以前苏联T-72坦克的三种弹都采用了这种药筒。
1.尾翼稳定脱壳穿甲弹
尾翼稳定脱壳穿甲弹是以弹丸的巨大动能和坚硬的弹头来击穿坦克装甲的,它是坦克最主要最有效的弹种。滑膛炮发射的尾翼稳定脱壳穿甲弹,又名长杆式穿甲弹。它是由长杆式弹心、弹托、被帽、风帽、尾翼和曳光管组成的。这种弹弹心的长径比可达13∶1~18∶1,弹的形状像钢针一样,弹丸又坚硬,在碰击倾角大的装甲时不易跳弹。这种弹都是用机械性能好的高密度合金钢或钨、贫铀合金制成的,这些材料都比坦克装甲材料的强度和硬度高。试验证明,贫铀穿甲弹比非铀穿甲弹的有效射程高50%,穿透装甲后形成的破片多,燃烧效力强,后效较好。弹丸命中坦克时能量通常可达300吨/
2厘米 ,相当于普通穿甲弹的四倍。所以,可穿透1000~3000米距离上厚度为100~150毫米、着角(钢板平面的垂线与弹丸轴线的夹角)为60~65°的装甲,也可以击穿防弹能力很强的复合装甲。而且这种弹的命中精度高,在1000米距离射击时精度可达0.2米左右。
从发展上看,采用随行装药结构和高能增速燃烧火药、液体发射药等都可进一步提高穿甲弹的初速,90年代可达到2000米/秒左右。采用火箭增速甚至可将弹丸加速到4500米/秒。尾翼稳定脱壳穿甲弹发展的一种趋向是高初速、高密度和大长径比,另一种趋向是小弹重、小弹径和高初速、高速、高射角。
2.破甲弹
破甲弹是一种靠金属射流破甲的反坦克弹。它是根据“聚能效应”的原理制成的,所以又名聚能破甲弹或空心装药破甲弹。所谓聚能效应是指破甲弹的锥孔装药能把分散的能量集中到一块的现象。破甲弹是由弹体、带空心凹陷的炸药、金属药形罩和起爆装置组成的。弹丸头部装有瞬发的压电引信,即使被撞击的装甲有70°的倾角,也能可靠地发火和破甲。一般地说,破甲深度可达破甲弹直径的4~6倍,如一发直径为8.5毫米的破甲弹,其破甲深度约400毫米。穿过装甲后的金属射流温度近千度,速度达每秒几千米,因而它的杀伤和破坏作用是很大的。
由于复合装甲的采用,破甲弹的利用率已经下降,T-72坦克弹药基数为39发,只配备5发破甲弹。破甲弹将以其精确制导能力,用来攻击隐蔽在掩体里仅仅暴露在火线以上部分的目标。今后,随着大锥角药型罩结构和大小锥角相结合的双锥结构药型罩的研制成功,高性能炸药的使用和安装,使用提高集中爆炸能量的形板等,弹丸的穿甲威力将会提高。同时,研制多用途破甲弹和复合破甲弹,破甲效力也会有大幅度提高。
3.碎甲弹
碎甲弹是靠炸药产生的冲击破碎装甲的,因而取名为碎甲弹。碎甲弹弹丸弹壁薄,头部较短,碰击目标时,弹头部容易变形或破碎,炸药易于紧贴装甲,不碎裂,不飞散,能充分发挥炸药作用。一发装4公斤药的122毫米的碎甲弹,在100毫米厚的装甲上起爆后,能在装甲背面崩下一块厚10~30毫米、重4~6公斤的碟形碎甲和几十块小碎片。碎甲弹一般能对1.3~1.5倍口径厚的装甲起破碎作用。它的结构简单,不易跳弹,威力较大;还能炸坏坦克履带、诱导轮和负重轮等,使坦克失去机动能力;对于具有较好防弹能力的炮塔更为有效,并能产生较强的二次效应;对于混凝土炮兵掩体和配用反坦克导弹的小分队人员有较大杀伤力;由于其破片速度高达1500~2000米/秒,杀伤效力较强,因而可兼作榴弹使用,所以配备这种弹的坦克一般不再配备榴弹。但是,碎甲弹的直射距离较近,通常为800米左右;命中精度稍差;对复合装甲的效果较差;弹体变形时,如果炸药不能很好地大面积贴近装甲或不是正在贴近瞬间爆炸,就不能很好形成应力波,碎甲效果就差些。
4.榴弹和制导炮弹
榴弹是利用弹丸爆炸后产生的碎片和冲击波来进行杀伤或爆破的弹种。坦克上通常装备的是杀伤爆破榴弹。它既有爆破作用,又有杀伤作用,用来摧毁野战阵地工事,杀伤敌方兵员和对付薄装甲目标。由于坦克滑膛炮不能发射靠旋转稳定的榴弹,所以配用长鼻式尾翼稳定破甲、杀伤两用弹。
在未来的主战坦克上可能采用制导炮弹。所谓制导炮弹,就是在弹头装有末端制导系统,用普通火炮发射后,能自动捕获目标并准确命中目标的一种炮弹。它常被人们称为长“眼睛”的炮弹。
坦克的火控系统
坦克火控系统包括潜望镜、瞄准镜、激光测距仪、坦克夜视仪、高低机和方向机、火炮稳定器和带有多种传感器的火控计算机。下面我们将逐一介绍。
1.潜望镜
供观察用的潜望镜,分为无放大倍率和放大倍率的两种。无放大倍率的潜望镜,是根据光学中平面镜成像的原理,由镜体加上下反射镜等组成的。根据需要改变上下反射镜相对位置可制成不同潜望高度的潜望镜,有的还可制成旋转和俯仰式的,以便转周视,增大观察范围。坦克上有车长观察潜望镜,炮长、二炮手用于搜索、观察的炮手潜望镜,驾驶员潜望镜,以及水陆坦克高潜望镜。
有放大倍率的潜望镜可以增大视见距离。它是由上、下反射镜和物镜组,分划镜 (有的没有),目镜组和镜体等组成的。有昼视、昼夜互换、昼夜组合、测光测距与昼夜视组合,稳像式的观瞄测距组合系统等类型。
指挥潜望镜安装在炮塔的指挥塔前方位置上,可随指挥塔转动和相对指挥塔俯仰。指挥潜望镜是潜望镜和望远镜的结合,它既能观察较近目标,又能对较远的目标进行放大。它是车长用来观察战场,搜索和指示目标,判定火炮至目标的距离和测量射弹偏差用的望远观察仪器。
2.瞄准镜
坦克炮瞄准镜是供炮长操纵火炮和并列机枪时,用以发现目标,直接瞄准目标,测量距离,修正射弹偏差,观察战场,观察弹着点的一种光学仪器。坦克炮瞄准镜大多是光学绞链式直筒望远瞄准镜。它由物镜组、分划镜、光学绞链、变倍系统、目镜组和镜体等组成。它装在火炮左侧,镜头部分固定在火炮摇架左侧的瞄准镜支架上,接眼的目镜部分固定在炮长座位前面的活动吊架上,以便于炮长瞄准用。火炮俯仰时,通过镜筒中部的活动绞链使镜头的物镜一端随之俯仰,并通过炮塔前部椭圆形开口瞄准目标。目镜处有护眼圈和护额垫,以保证坦克颠簸时不致碰伤乘员。这种瞄准镜通常能将目标放大7~10倍(辨认远处目标和提高瞄准精度时用)和3.5~5倍(视场角较大,一般用作观察战场,搜索目标)两档,可以根据不同的需要,变换放大倍率。这种瞄准镜利用测距分划,只能对事先已知尺寸为2.7米高的目标(如敌坦克)进行测距,精度低,1000米的距离误差竟达80~100米。在装有较先进的火控系统的坦克上,这种瞄准镜仅作为辅助瞄准装置使用,即在先进的火控系统出现故障时才使用。
近年来出现的指挥仪式火控系统中,炮长采用了独立稳定式瞄准镜,或称稳像式激光测距瞄准镜,如豹Ⅱ坦克上的 EMSE-15型炮手用综合式瞄准镜。该瞄准镜内有一具备有两个放大倍率(如8倍、16倍)的单目光学潜望式瞄准镜、钕玻璃激光测距仪,以及稳定瞄准线的设备。稳定的主瞄准线在方向上有一定的活动范围,高低方向上则取决于火炮瞄准角的修正角度。其瞄准线的稳定多是在平行光路中通过稳定反射镜来实现的。光线从入射窗进来后,经反射镜反射,通过透镜、直角棱镜在分划镜上成像,观察者则通过目镜和棱镜组进行观察。这种指挥仪式火控系统的一般工作过程如下:炮长通过控制装置使瞄准线对准目标,此时火炮自动随动于瞄准线。对准目标后进行测距和跟踪,随后,火控计算机根据输入的距离、目标速度、倾斜角与各弹道修正参数,计算出提前角。该提前角信息仅输送给炮塔和火炮驱动系统,驱动火炮到达允许的射击提前位置。一旦火炮进入计算机所规定的允许射击位置,就自动进行射击。为了判断火炮是否进入允许射击位置,一般在系统中设有一个具有逻辑判断功能的重合电路或称射击门电路。由于这种瞄准镜有独立的瞄准线稳定装置,炮长直接控制的是瞄准线而不是火炮,需要稳定的往往只是一个棱镜或镜座,质量很小,所以瞄准线的稳定精度很高,可达0.2密位,远远超过了火炮的稳定精度,使射击精度大为提高,可以实现行进间对运动目标的射击。必须指出,瞄准线独立于火炮,动态精度虽然提高,但静态精度却有所降低。
激光测距仪与昼夜间瞄准镜合成一体以及瞄准线的稳定,可使炮长不论在白天还是夜间,不论在原地还是在行进中都能判定目标距离并对目标进行准确的射击。美国的XM-803坦克装上这种瞄准镜以32公里/小时的速度越野时,瞄准线误差值在水平和高低两个方向上不大于0.5密位。坦克炮有了这种瞄准镜和其他先进的火控部件组成的火控系统,不管坦克如何颠簸,都能保证有较高的首发命中率。
3.激光测距仪
激光测距仪是用激光来测定坦克至目标距离的一种仪器。利用激光测距比用目测判断距离或用光学测距的精度都高,而且精度不受距离远近的影响;激光测距仪体积小,重量轻,操作和使用方便,易于掌握;抗干扰性强。但是,它在大雾弥漫能见度差激光衰减严重的情况下,无法测距。
激光测距仪的测距原理是怎样的呢?大家知道,距离=速度×时间。激光测距仪就是根据这个基本道理设计的。测距时,激光测距仪向目标发时一个激光脉冲,由于目标的漫反射,部分能量被反射回激光测距仪。激光测距仪测量出从发射激光脉冲到接收到回波激光脉冲所经过的时间t、则激光测距仪到目标的距离S就可以求出。因为光速C约为30万公里/秒,在激光测距仪测量出的时间t内,激光经过一个来回路程,所以1/2Ct就是激光测距仪到被测目标的距离S。但是,由于光速极快,其运行几百米、几千米的时间,是用钟表无法精确测出的。采用时标振荡器(石英晶体振荡器)可以计时。这种振荡器振荡频率极高,比如每秒钟能产生3000万个晶振脉冲,每个脉冲的持续时间就是3000万分之一秒。测距时,在发射激光脉冲的同时,计数器开始记录晶振脉冲的个数,一直记到接收到回波激光为止。如果共记录
-7n个脉冲,那么,n×3×10秒就是激光脉冲在激光测距仪和目标间往返一次的时间。显然,用这种方法可以精确地测量出时间t,从而算出目标的精确距离。
激光测距仪种类繁多,性能各异。但其结构都包括电源、激光器、激光发射光学系统 (发射望远镜)、激光接收光学系统(接收望远镜)、电控系统 (光电元件、放大整形、门控电路、时标振荡器、计数器等)、距离显示器等几部分。激光测距仪的工作过程如下:接通电源,激光测距仪及其时标振荡器开始工作。这时由于门关闭,时标振荡器的脉冲信号不能进入计数器。当测距仪对准目标且炮长按下触发按钮时,激光器就发出一个很强很窄的激光脉中。激光器发出的激光要分成两路:一路激光束经过发射光学系统,使激光束发散角进一步减小后射出并经大气传输打到目标上;另一路就是其中的极小一部分激光立即由取样棱镜的反射而进入光电元件的光敏面上,作为发射参考信号 (取样信号或称主波信号),来标定激光出发的时间。参考讯号到达光电转换器(光电倍增管等),将光讯号转换成为电信号,即光脉冲变成电脉冲。这个电脉冲经放大整形后送入时间测量系统,打开电子计数器的电子门,此时,时标振荡器的脉冲信号进入计数器,计录器开始记录脉冲个数(即开始计算时间)。而射向目标的激光脉冲,由于目标的漫反射作用,总有一部分光从原路反射回来,而进入接收光学系统,由目标返回的激光脉冲(接收信号或称回波信号)同样也经过光电转换器、放大整形电路而进入时间测量系统,回波信号推动电子门发出关门指令,使电子门关闭,时标振荡器的脉冲信号不能进入计数器内,计数器停止计数 (停止计算时间)。时间测量系统的计数器把所记录的脉冲个数经译码电路换算成距离,通过距离显示器显示出来,所显示的数字,就是被测目标的距离。同时,把测出的目标距离信息自动输入火控计算机。
激光测距瞄准镜借助瞄准镜视场内的指标可与坦克武器一起进行校正。独立式激光测距仪是根据望远镜原理制成的接收望远镜和发射镜望远镜各有其独自光学元件的测距仪。其主机部分 (收、发机部分)通常安装在坦克炮塔外部的装甲匣内,其控制部分位于炮长和车长的工作位置上。独立式激光测距仪通常是借助坦克炮瞄准目标的,这时,两者的光轴必须一致 (两者同时对准一个目标)。也就是说炮长通过瞄准镜瞄准目标后,激光测距仪也对准这个目标,只要按下激光发射按钮,就可以测出目标的距离并在距离显示器上显示出距离数值,使用起来非常方便。
现代坦克用激光测距仪测距范围为300~10000米,测距误差为±5~10米,每分钟能测距6~12次,最高达每秒钟1次,在各种气候条件下测距的可靠性达99%。在-40℃~+50℃的温度下都能正常工作。但是由于激光的光束较狭窄,对准目标较困难,所以当目标比较隐蔽,其前后有烟带、树木、土堆或农作物(仍可见目标)等时,不易测得其真实目标距离,目前有的已有“选择”数据的能力,由乘员控制来解决,即在一次发射中,能选择读第一或第二或第三返回的数据,而舍弃其他数据。美国M-1坦克采用的二氧化碳激光测距仪比较简单,测距效能高,对人眼也安全;该测距仪和热成像仪一体化之后,能够昼夜测距。所以,它是一种较理想的激光测距仪。
4.夜视仪
第二次世界大战后期德国人在车辆上安装了一种仪器,使车辆在黑夜不开灯就可高速行驶,从而把V-2火箭在夜间送往前线,成功地避开了同盟国军队的监视和空袭。这种仪器就是最早的坦克夜视仪。现在的主动红外夜视仪就是由它演变而来的。所谓坦克夜视仪就是利用红外线或放大天然微光原理供坦克乘员进行夜间观察和瞄准的仪器。现代坦克上主要用主动红外夜视仪、被动红外夜视仪和微光夜视仪。
(1)主动红外夜视仪
红外夜视仪是用目标 (物件、人员)发出的或反射回来的红外线进行观察的夜视仪器。现代坦克装配有驾驶员红外夜视仪、车长红外夜视仪、炮长红外夜视仪和炮长红外夜间瞄准镜。主动红外夜视仪靠自带红外光源 (红外探照灯)照射目标,利用被目标反射回来的红外线转换成可见图像,由红外探照灯、观察镜、电源三部分组成的。由于自然界物体的温度较低,辐射出的红外线能量很小,不能满足仪器的成像要求,所以需要红外探照灯或带有红外滤光玻璃的白炽探照灯来发射人眼行不见的红外辐射。主动红外夜视仪的工作原理如下:当接通电源后,红外探照灯发射出红外线,照射前方目标,由主动红外夜视仪中的观察镜的物镜接收目标反射回来的红外线,在红外交像管的光电阴极面上形成目标的红外光学图像,通过变像管将不可见的红外目标像换成人眼可见的目标图像,在荧光屏上显示出来,于是人眼就可通过观察镜的目镜观察到目标的图像。目前,坦克驾驶员红外夜视仪的视距 (目标是坦克)为60~100米,车长红外夜视仪的视距(目标是坦克)为800~1000米,炮长红外夜间瞄准镜的视距为1200米,有的可达1500米。主动红外夜视仪因为有红外探照灯照明场景,光束照射到目标上将使景物间形成了较显著的明暗反差,所以图像消晰,利于观察但是容易自我暴露 (红外探照灯向外发射红外线、容易被红外探测器发现)而招来火力攻击,而且观察的范围只限于被照明的景物,视距也受到探照灯的尺寸和功率的限制,红外探照灯易被打坏,因而逐步为各种被动式的夜视仪器所代替。
(2)微光夜视仪
夜间的月光、星光、银河系的亮光和大气辉光等,通称为“微光”。利用夜空的微光并加以放大,使人眼能看得见目标图像的一种仪器称为微光夜视仪。微光夜视仪的总体结构与主动式红外线夜视仪基本相同,唯一的区别是省去了红外线光源――红外探照灯,所以它是一种被动式夜视仪器。微光夜视仪的关键部件是像增强器,它把微弱夜天光 (其照度低于0.1勒克斯)照明下人眼分辨不清的景物图像转换成人眼可看清的可见光景物图像。微光夜视仪工作原理如下:其光学系统的物镜接收目标反射的自然微光,在像增强器的第一级光电阴极面上形成极为微弱的目标光学图像,经像增强器增强
(其亮度增益通常为几万倍)后,在最后一级荧光屏上显示可供人眼观察的目标图像。微光夜视仪构造简单,体积较小,耗电较少,特别是不需人工的红外光源,因而使用安全可靠,不易暴露,从而提高了坦克在夜间的隐蔽性。英军在马岛战争中,借助这种夜视设备最终占领了马岛,就是个明证。但是,微光夜视仪的观察效果和作用距离,受周围环境的自然照度 (星光或辉光的亮度)和大气透明度影响较大,在全黑条件下几乎不能工作。与主动红外夜视仪相比,图像不如后者清晰。特别是当天空中有密布的浓云和贴近地面的烟雾与无定向的散射将使景物的照度和对比度明显下降,会严重地影响观察效果。所以在某些坦克上还同时装有主动红外夜视仪或被动红外夜视仪。利用级联式像增强器的微光夜视仪,基本上能符合战术性能要求,但它遇到炮口焰、爆炸闪光等会产生模糊现象,最后一级图像还有畸变,因而不得不时常中断工作。在像增强器的光电阴极和荧光屏之间插入一个具有电子倍增功能的器件,可以避免闪光造成的模糊现象。目前,较先进的微光夜视仪的夜视距离在星光下已达到1600米,月光下已达2700米。如果把像增强器加在电视机的光导摄像管面前,那么电视机就可以在微光下工作,成为全被动放大的夜视仪器。豹Ⅰ坦克上的PZB-200型坦克瞄准镜就是这一种。这种瞄准镜是由安装在坦克炮上方的电视摄像机、两个位于车长和炮长前面的 监视
-4器、操纵台和连接电缆组成的。当照度为10勒克斯时,使用该瞄准镜可在1500米距离内进行射击。
(3)被动红外夜视仪
大家知道,响尾蛇的眼睛已退化得快成为瞎子了,但它却能敏捷地捉住老鼠及其他小动物,是因为在响尾蛇的眼与鼻之间的小“颊窝”热敏感器官
(热源测位器),能接收小动物身上发射出来的红外辐射,周围温度变化在0.003℃它就能感到,且能定方位,引导响尾蛇去猎取食物。被动红外夜视仪就是根据这种现象研制成的。它是利用红外探测器将目标与背景间、目标各部分间的辐射差接收后,形成可见的图像显示出来,是供人观察的一种夜视仪。它可利用人体、坦克发动机废气等发出的微弱红外光源进行观察、瞄准。由于它工作在8~14微米的热红外波段,可将处于常温下的景物的热辐射分布图像加以记录并转换成可见的光图像显示出来,所以又称为热成像仪。M-1和豹Ⅱ坦克均装备有热成像仪。
被动红外夜视仪是利用光学扫描技术和对中、远红外辐射敏感的固体半导体材料,将地物辐射的红外能量转变成电信号,把电信号处理放大后,再转变成电信号,把电信号处理放大后,转变成可见光图像的。来自目标的热辐射通过输入光学镜组 (无焦点)照射到扫描器上,并通过一个红外平行光物镜聚焦在探测器上。探测器将热辐射信号转换成电信号。电信号经过相应放大后通过发光二极管转换成可见光。通过平行光镜头将发光二级管射线控制在扫描镜的背面。用这种方式,在任何情况下都必然在机械上保证接收热成像和发光二极管显像的同步性。因此,可以看到在发光二级管组件中产生、由扫描器组合的“热图像”。致冷器的作用是提高系统的灵敏度,减少探测器本身的热辐射。
被动红外夜视仪自身无红外光源,只依赖目标与背景间、目标各部份间的温差而产生的热辐射成像,因而不受周围环境的自然照明条件影响;用它可透过雾、雨、雪观察目标甚至能透过稀疏的丛林进行观察,能透过伪装,探测出隐蔽的车辆和火炮的位置,甚至能辨认机场上刚起不久的飞机留下的
“热痕”轮廓;具有良好的隐蔽性,不易被敌方发现和干扰,使用安全可靠;它不会由于炮口焰、炸弹爆炸等产生致盲效应;对坦克发动机和刚发射过的枪管、炮管等具有较强热辐射源的目标,它的视距可达数公里。现代较先进的主战坦克装备的被动红外夜视仪视距一般为1200~1500米,最大已达3000米。但是,热成像仪需要附加的制冷设备不易保证及时更换;冷却探测器的气瓶不易得到,换瓶后制冷器系统的污染也是个问题,角度辨率还比较低,目标的细节难以辨认;它所显示的温度对比图像与可见光对比的图像有所差异,人们观察不习惯;敌方在含有防红外药剂的烟幕或装备防热红外侦察的伪装装置掩护下,可能照常能够机动。
总之,由于坦克上装有这些夜视仪器,在夜间能看清周围的目标,所以坦克变成了夜战的能手。
5.方向机和高低机
对坦克火炮的操纵和稳定是为人们最先注意的问题。现代坦克上装的动力传动装置,以保证最快的瞄准速度并保证迅速地将火力从一个目标转向另一个目标。此外,火炮还需要最小稳定瞄准速度以保证对目标的精确瞄准。现代坦克的最小瞄准速度为0.05°~0.1°/秒不等,而炮塔的急转速度已提高到30°/秒和30°/秒以上。
一代坦克炮有两套操作机构可使用。一套是手工操作,由炮手左手摇动方向机、右手摇动高低机,实施跟踪和瞄准;另一套是电操纵,高低向一般为电液式,由炮长控制,水平向由炮长通过电机放大机控制。前者使用可靠,但速度慢,现代坦克留作备用。后者既可实施高速跟踪,又能实施精确瞄准,是常用机构。早期坦克仅有手工操作机构。
(1)炮塔方向机
坦克炮大都安装在可旋转的炮塔上。在战斗时,炮塔应能同速转动,使火炮对准随时出现的目标,炮塔还应能低速转动以对目标进行精确瞄准,或以某一任意速度转动使火炮跟踪敌人活动目标,进行概略瞄准或行进间瞄准等等。炮塔方向机就是用来回转炮塔的,它一般由炮手操纵,但在近代坦克上,为了使车长发现新的目标时能直接将火炮调转到新目标力向,以提高火力机动性,车长大都能超越炮长直接操纵炮塔。
炮塔方向机一般是由炮塔座圈、方向机减速箱和驱动装置等部分组成的。炮塔座圈相当于一个大的向心推力球轴承,用来支承炮塔,并使炮塔能相对于车体灵活转动。行军时,为了将炮塔可靠地固定住,采用炮塔行军固定器。方向机减速箱简称方向机。它固定在炮塔上,直接用来驱动炮塔。驱动装置用来驱动方向机减速箱。现代坦克在迅速转移火力或者使用稳定器时用动力驱动,即用电驱动或液压驱动。动力驱动的能源是坦克内的蓄电池和发电机。当不使用稳定器或动力驱动装置发生故障而需要转动炮塔时,用于驱动。在采用双向稳定器的坦克上,方向稳定器产生的信号,通过动力驱动装置来驱动方向机减速箱。目前,方向机的转速可快可慢,通常可使炮塔以0.05°~30°/秒的任意转速左右转,十分灵活。
(2)高低机
高低机固定在炮框左侧,用来赋予现代坦克炮以-10°~+20°的高低射角。高低机主要是由减速机构、保险联轴器和解脱装置组成的。减速机构用来赋予火炮以高低射角和使火炮进行瞄准。保险联轴器用于坦克行进间火炮剧烈颠震时,保护高低机的零件不受损坏。解脱装置用来使蜗杆和蜗轮分离。
手摇瞄准时,转动转轮,动力经减速机构使火炮绕耳轴俯仰。利用稳定器操纵台瞄准时,解脱装置使蜗杆和蜗轮分离,因而火炮不受高低机控制,即可使用稳定器进行高低瞄准,使用高低稳定器时火炮可在0.07°~4.5°/秒速度范围内进行俯仰瞄准,快速地改变射击距离,并准确地捕捉目标。
6.火炮稳定器
坦克在起伏不平或曲折的道路上行驶,会使火炮因车体振动而偏离瞄准角即射角或因坦克转向而偏离原方位角。在这种情况下,即使通过瞄准镜发现了目标,也难以操纵火炮高低机和方向机在短促时间内完成精确瞄准与准确射击。因而需要安装一种自动调节装置,以保证火炮不因车体的振动而改变已瞄准的方位。这种装置就是火炮稳定器,它可将火炮和并列机枪稳定在所赋予的射角和射向上。火炮稳定器分为单向和双向两种。仅有火炮高低稳定的是单向稳定器,也称高低稳定器。不仅能高低稳定,而且也能实现方向稳定的是双向稳定器。现代主战坦克大多装了双向稳定器。采用火炮双向稳定器,可使坦克运动时火炮和并列机枪自动地保持在所赋予的高低和方向位置上,从而提高行进间射击的精度;可用一个操纵台实现高低或水平方向的瞄准,既轻便,又平稳;车长可以超越炮长而直接控制稳定器给炮长指示目标;在火炮不需要稳定时,可用电传动机构来驱动炮塔。
那么,火炮稳定器为什么能使火炮不受车体颠簸的影响呢?这好比人们抱着电视机坐在行驶的汽车上,汽车左右倾斜或前后俯仰,人都能感觉出来,并会通过神经系统驱使身体向相反的方向倾斜或俯仰,从而抵消摇晃、颠簸的作用。坦克火炮稳定器正是一种相当于人体这种功能的装置。它是由测感机构和执行机构组成的。相当于人的感觉器官的测感机构,专门用来测量和感受坦克车体左右摇摆或前后俯仰的角度大小和速度的快慢。相当于人之手脚的执行机构,根据测感机构测量出坦克车体水平摆动、俯仰角的大小和俯仰速度的快慢,使炮身向相反的方向摆动和俯仰,以抵消车体的晃动和颠簸。
火炮稳定器是由陀螺仪组、操纵台、动力油缸、液压放大机、电机放大机和炮塔电功机等组成的。现举例说明其简单原理:例如,火控计算机定出火炮射击高低角是0.1°,高低方向的火炮稳定器就将火炮身管稳定在0.1°的位置上。由于火炮身管受车体上下振动的影响,高低角必然会发生变化。如果炮管台高0.05°,高低稳定器中的测感机构――陀螺仪等就会立刻感受到炮管变化0.05°,并将感受到的这个变化量变成电信号,放大后,通过执行机构――电动机和动力油缸等对火炮加修正力,使炮管迅速向下转动0.05°,恢复到高低角原定的0.1°位置上。此时测感机构就没有信号输出,修正力也就立刻消失,炮管也就不再转动。由于这个修正过程是在很短的时间内完成的,因此,尽管炮管受车体颠簸振动发生变化,但修正合力会使坦克火炮仍能保持在预定射角的允许范围内。双向稳定器与单向稳定器的工作原理基本相同,都是利用陀螺仪的定轴性进行稳定,利用陀螺仪的进动性进行瞄准的。所不同的是为了稳定火炮的方向,将陀螺仪的安装方向转了90°。稳定精度是评定火炮稳定器的主要指标。据报导,M-1坦克、豹Ⅱ坦克高低瞄准的稳定精度是0.2~0.15密位,方向瞄准的稳定精度是0.4~0.3密位。
7.火控计算机
火控计算机是一种自动赋予火炮射角的仪器,是一个数据处理系统,它是火控系统的核心部分。炮长用瞄准镜搜索到目标后,进行瞄准并通过激光测距仪测出日标距离,该距离数据将自动输入火控计算机,火控计算机根据目标距离、选用的弹种、内外弹道数据以及炮管磨损、耳轴倾斜、气温、药温、风力、风向、初速等的修正量(可用各种传感器测量,也可用人工装定)进行弹道解算,解算出的瞄准角和方向提前角被送到瞄准镜并自动装定表尺,同时输出电信号控制火炮稳定器赋予火炮瞄准角和方向提前角,并自动调整好火炮的位置,炮长在瞄准镜内进行二次瞄准即可击发射击。除开始瞄准、二次瞄准和弹种选择外,其他工作程序完全自动化,这不仅缩短了火炮射击时间,而且提高了火炮射击精度,使在 1500米射程上的命中率可提高70%以上,即使射程提高一倍仍然可以保持命中率。
火控计算机的种类很多,数字式电子弹道计算机比较先进。因为它既能指挥控制坦克炮的射击,又能指挥控制反坦克导弹的发射,有利于在坦克上采用导弹武器;它比模拟式计算机更能满足增强坦克的火力的要求,而且可与机载、舰载计算机通用;电子弹道计算机的计算精度高,并且有记忆存储、逻辑判断的能力。
火控计算机是由输入装置、运算器、存储器、控制器和输出装置等组成的。简易的火控计算机连存储器都没有,用距离译码来控制运算。输入装置用来输入原始数据和计算程序。存储器用来保存和记录原始数据、运算步骤及中间结果。运算器是对代码进行算术运算和逻辑运算等各种运算的装置。控制器用来实现机器各部份的联系和控制,保证计算过程的自动进行。输出装置用来输出计算结果。
弹道计算机的道理和算盘的道理是一样的:要算一道题,先拿到任务书
(相当于计算机的输入装置),然后根据需要把记录在纸上的数据(相当于存储器),有顺序地取到算盘 (相当于运算器)上,人用手指拨珠子并决定进行何种运算 (相当于控制器),最后把计算结果写在报告书(相当于控制器),最后把计算结果写在报告书 (相当于输出装置)上。但是,火控计算机与算盘有不同之处:算盘是一颗一颗珠子拨算,而且要考虑对中间结果的处理,火控计算机则每秒可以自动进行几十万次的运算。装有这么一套先进综合火控系统的主战坦克,无论在白天或黑夜,无论是处于原地还是行进间,都能又准又快地确定火炮射击的方向与高低角,保证火炮迅速地瞄准敌人的目标(静止或活动的目标),并把它们击毁。